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total disorder (continuous diffuse lines instead of 
reflexions on X-ray diffraction photographs). 

Moreover, we must pay attention to the fact that 
the different types of faults exert a similar influence 
on different points of the reciprocal lattice. Thus it 
is not possible to distinguish between some types of 
faults on the basis of the above parameters. One could 
try also to find expressions for measurable parameters 
describing lattice-point asymmetry and changes in 
the integrated intensity, as was done by Prasad & 
Lele (1971). However, these changes and peak asym- 
metry are usually too small to be estimated with 
sufficient accuracy. Thus peak shifts and half widths 
are recognized to be the best measures of faultiness. 
This was shown by Pandey & Krishna (1976) for the 
6H(33) structure. 

The limitations of our theory and inaccuracy in the 
results which follow from the assumption of small 
values of OLjk are the next problem for discussion. We 
will show that this assumption does not limit the 
generality of the above theory because only small 
values of OLjk have physical sense. In order to jtistify 
the above statement let us recall the definition of 
probability ajk. It is equal to the ratio of the number 
of layers followed by faults of a particular 
type to the full number of layers in the examined 
sequence. For example, in the following sequence 
of an 8H(44) structure with stacking faults 
[(4433443344443344443344) - in Zhdanov symbols] 

we have a(33) = 4/80 = 0.05. It is clear that considera- 
tion of these faults as the (33) type in 8H(44) struc- 
tures makes sense only for o~(33)< 0" 1. For a~33)> 0" 1 
the frequency of the occurrence of faults of (33) type 
is so great that the Zhdanov symbols (33) must be 
united in groups and it is necessary to interpret this 
sequence as a 6H(33) structure with stacking faults 
of (4) type. For example, it is necessary to interpret 
the sequence (33433433433334) as a 6H(33) structure 
with o~(4 ) = 4/46 but not as an 8H(44) structure with 
tx(33)=5/46. We expect that on X-ray diffraction 
photographs from the structure with this sequence 
the peak maxima will occur near the positions corre- 
sponding to those for a 6H(33) structure. 

The assumption of a random distribution of single 
faults does not limit our theory either. In general, 
when this assumption is not fulfilled another poly- 
typic structure is formed. 
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Abstract 

An algorithm is implemented to determine the form 
and phase shift for inconsistent type II quadrupoles 
for any space group having glide or screw-axis trans- 
lations which are not a consequence of lattice center- 
ing. Cumulatively there are only six different Miller 
index restrictions and nine different phase shift forms 
common to all space groups of orthorhombic or lower 
symmetry. A similar analysis has been performed for 
a newly discovered type III class of quadrupoles. The 
configuration of the phase connections among the 
four triples of the type III quadrupole is different 
from the common configuration previously described 
for both normal (type I) and inconsistent (type II) 
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quadrupoles. A knowledge of these constraint condi- 
tions for type II and III quadrupoles greatly simplifies 
a procedure for generating these relationships. 

Introduction 

A quadrupole has been defined as a relationship 
among four interdependent three-phase invariants, 

~ i  = ~h -- ~k + ¢~k-h 

~2 = ~k-- ¢h + ~h-k (I) 
¢~3 = ~01- ~)h "[- ~0h-! 

(I)4 = --~Ok-h -- ~)l-k -- ~ h - l ,  
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such that the sum of phases, which occur as six 
Friedel-related pairs, 

(~)1 "lt- (~2 "q- (~3 21- (I)4 = 0.  (2) 

An inconsistent quadrupole phase relationship 
(Viterbo & Woolfson, 1973), 

¢~1 =- (~h -- ~Ok + (~k-h 

1~2 = ~ k -  ~DI + ~01-k (3) 

(J53 ~- (~1 -- ~)h.R i '@ ( '~.Rt-!  

¢~4 = --(43(k-h).Rk -- (~(I-k).Rt -- (4)h.Rj-I, 

can be formed in non-symmorphic space groups pro- 
vided that conditions relating certain of the reflection 
indices can be satisfied, i.e. 

( h -  k).Rk + ( k -  I).R,+ l -h .R j  = 0, (4) 

and such that a non-zero phase invariant sum 

~ + ~2 + ~3 + ~4 = 27r[-h.tj + (h - k).tk 

+ ( k - l ) . t t ]  (modulo 217") (5) 

will result. The Rj are the inverse transforms of the 
rotation matrices for the various equipoints of the 
space group, the tj are the associated translation 
vectors. Inconsistent quadrupoles have been referred 
to as type II quadrupoles (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984) in 
acknowledgement of the class of normal type I quad- 
rupoles given as expression (1). Conditions which 
define these inconsistent quadrupole relationships in 
permissible space groups may be expressed in terms 
of a reduced set of any three of the six reflection 
vectors which themselves do not form a single three- 
phase invariant. Thus from (4) one obtains 

h . (Rk-  Rj)+ k . (R t -  Rk)+ ! . ( I - -Rt)=0,  (6) 

which defines the constraints on the components of 
the three vectors which must be satisfied in order to 
form an inconsistent quadrupole. 

One should be aware of a situation which may arise 
when zonal or axial reflections appear in such quad- 
rupoles for non-centrosymmetric structures. For 
example, in space group P2~212~ 

t~ 3 -- ~014 0 + ~O0~ ~ -I- ~0Ti 2 

t~ l  'at" (~2 + t~3 + (D4 : 0 

(7) 

defines a normal quadrupole relationship. However, 
because of the zeros, one can often perform Friedel- 
related operations (e.g. h, k, l-> h, k, - l )  on several of 

the triple invariants, 

- - ~ 3  = ~140 "lt- ~032 "~- ~0ii2 

-- ~ 4  = ~Pi~O + q~02~ + q~112 

and observe that the same invariants also define a 
valid ~'-quadrupole, 

~1 + q~2 - q~3 - q~4 = Tr (modulo 27r). (8) 

Although (7) defines a normal quadrupole that sug- 
gests all four I~,1 may be clustered near 0 °, condition 
(8) informs us that at least two of the [@,[ must be 
45 ° or more in error. In such instances it is imperative 
to treat such ambidextrous quadrupoles as being 
inconsistent. A similar more trivial example exists 
when a normal quadrupole possesses only one @~ 
which is restricted, and to +90 °. Friedel inversion of 
this phase invariant ensures the formation of a ~r- 
quadrupole, and at least one of the three unrestricted 
[@~] must be in error 30 ° or more. Conditions (5) and 
(6) are sufficient to identify unambiguously each of 
the above examples as an inconsistent quadrupole, 
regardless of the special nature of zonal reflections 
which make them ambidextrous. 

We note that a new class of quadrupoles, referred 
to as type III, can be formed from a different configur- 
ation of six pairs of phases from four three-phase 
invariants, namely 

(DI = ('~h "~ ( ~ k -  (~h+k 

(D2 "~ -- ~ h  -- ('Pk.R, "[- ~h+k.Rj 

~ 3  -- ( '~h+k-  (~1 -  ~Dh+k-I 

(I)4 -- -- (Ph+k.Rj -~- ~01.R k + ~ (h+k- I ) .R / ,  

(9) 

where the phases from each triple are linked to only 
two of the remaining three triples, rather than all 
three as was commonly noted for the type I and II 
relationships. It should be obvious that (9) cannot 
form a quadrupole in which all phase pairs are strictly 
Friedel related. Such a relationship would not contain 
four independent triples, but rather two independent 
pairs. It also follows that I cannot be a general vector, 
but must be constrained in order to satisfy the con- 
dition 

(h + k) . (Rt -  Rj)+ l . (Rk-  R, )=0.  (10) 

All such relationships are potentially inconsistent, as 
was noted for the type I I quadrupoles, the phase shift 
for type III quadrupoles being 

=27 r [ -k . t j+ l . t k+ (h+k- l ) . t s ] (modu lo  2~r). (11) 
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An example of a type III quadrupole in space group 
P2~212~ given as 

(~)1 ~-- ~)123 "1- ~t)336 ~ ~ , ~  

(~3 = ~0459 "It- ~636 "[- ~2ff.3 

~ 4  = ~04.13 "J¢" ~636 "[- ~223 

(12) 

may be alternately written in configuration (9) with 
the reflections indexed as the vectors 1 and h + k + l  
interchanged to rearrange the last two three-phase 
invariants: 

t~3 = ~459 -at- ~223 "~- ~ t ~  
(13) 

~ 4  = ~413 "3t- ~0223 "3t- ~0636, 

such that the constraints (10) on the reflection indexed 
as the vector I are different. In the first example ! (636) 
is restricted to have the same k and l indices as 
reflection k (336), while in the second case the reflec- 
tion 1 (7-23) has the same k and I indices as reflection 
h(123). It is important to recognize that these 
differently arranged quadrupoles are identical, and 
the two distinct constraint conditions are redundant 
insofar as producing the same quadrupole is con- 
cerned, and it is immaterial which of the two is 
employed and whether reflection 636 or 223 is to be 
treated as the vector 1. The reciprocal-lattice and 
phase-shift factors for any one of the two cases are 
related to those for the other case by interchanging 
the vectors h and k as they appear in the conditions. 

Results 

The conditions for type II quadrupoles imposed by 
equations (5) and (6) were explored systematically 
for all 230 space groups using the equivalent-posi- 
tions-generating code described by Burzlaff & 
Hountas (1982) to obtain the rotation matrices and 
translation vectors required. The cumulative results 
for the numbers of distinct reflection index conditions 
(6) and translation components (5) for all space 
groups within each crystal class are given in Table 1. 
Seven of the 13 monoclinic space groups permit 
inconsistent quadrupoles, and these quadrupoles may 
be expressed in terms of two distinct reciprocal-lattice 
conditions and two different phase-shift forms. Of 
the 59 orthorhombic space groups 46 allow incon- 
sistent quadrupoles; these may be expressed in terms 
of six distinct reciprocal-lattice conditions and nine 
different phase-shift forms. These six and nine ortho- 
rhombic conditions include those exhibited by mono- 
clinic symmetries, such that these results are cumula- 
tive of the first 74 space groups in International Tables 
for Crystallography (1983). The situation becomes 
exceedingly more complex as daughter-related 
equivalent positions are introduced in higher- 
symmetry space groups. The first tetragonal space 

Table 1. Cumulative number of reciprocal-lattice 
conditions and phase-shift type of type II quadrupoles 

for each crystal class 

Cumulative Cumulative 
Crystal class HKL conditions shift types 
Monoclinic 2 2 
Orthorhombic 6 9 
Tetragonal 705 1601 
Trigonal 686 45 
Hexagonal 2897 303 
Cubic 77093 14989 

group that has inconsistent quadrupole relationships 
is P4~, which has two parent-form (x, y, z ; - x , - y ,  
½+ z) and two daughter-form ( -y ,  x, ¼+ z; y, - x ,  3+ z) 
equivalent positions in the primitive reduced cell. 
These give rise to 43 distinct reciprocal-lattice condi- 
tions and 45 different phase-shift forms for forming 
inconsistent quadrupoles. The cumulative results for 
all tetragonal space groups are a staggering 705 dis- 
tinct reciprocal-lattice conditions and 1601 different 
phase shifts, given the specific non-redundant form 
of the quadrupole defined by (3). 

The trigonal, hexagonal and cubic space groups 
are seen to produce equally large numbers of ways 
of forming these relationships, such that it would be 
impossible to tabulate these various distinct condi- 
tions in the space provided in a paper of normal 
length. It should also be apparent that it would be 
self defeating to attempt to retrieve and utilize large 
numbers of conditions from such an unwieldy compi- 
lation if the intent is to incorporate these conditions 
into a procedure which would identify the incon- 
sistent quadrupoles among a phasing set of triples. 
It would be best to generate these conditions from 
the space-group symbol, as was done in this investiga- 
tion. Since the number of conditions for space groups 
of orthorhombic or lower symmetry is manageable, 
and since many organic and biomolecular compounds 
tend to crystallize in lower-symmetry habits, an 
exhaustive compilation is given for these space groups 
in Table 2.* 

The six reciprocal-lattice conditions and nine phase 
shifts indicated are listed in Table 3. The P21212~ 
example given above conforms to the reciprocal- 
lattice condition A in Table 3 where k = - h l ,  - k l ,  
-11 (162), 1= h2, k2, 12 (140), and h =  h3, k3,/3 (032); 
Rk = I, Rj = Rt (h, k, l - ~ - h ,  k, - l ) .  The phase shift 
given by entry 1 in the lower part of Table 3 requires 
k I + k2+ k 3 to be odd if the quadrupole is to be in- 

* Complete versions of Tables 2 to 5 have been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP44862 (8pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH1 2HU, England. The 
excerpts of these tables used in the present paper are for the first 
19 space groups, which include the P212~2~ entries referred to in 
the text. 
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Table 2. Condition and phase shift of type II 
quadrupole for non-symmorphic space groups of 

P2~2~2~ or lower symmetry 

All symbols refer to Table 3. 

Space group Quadrupole 

P21 A1 
Pc B2 
Cc B2 
P21/m A1 
P 2/c B2 
P21/c AI B2 
C 2/c B2 
P2221 C2 
P 21 212 AI D3 
P212121 A1 C2 D3 

Table 3. The Miller indices of this table are defined as 
h = h3,  k3 ,  13 , k = - h i ,  - k l ,  -11 ; 1 = h2, k2,  12 referring 

to equation (3) 

Because there is no higher rotation operation than twofold and 
R k = I and Rj = Rt, for each case, only three diagonal elements of 
R~ and Rt are listed in the table. 

(a) Symbols of quadrupole condition and type in Table.1. 

Symbol Condition Operators 
A hl+h2+h3=Oand 11+12+13=0 -1 +1 -1 
B kl+k2+k3=O +1 -1 +1 
C hl+h2+h3=Oand kl+k2+k3=O -1 -1 +l 
D kl+k2+k3=Oand 11+12+13=0 +1 -1 - l  

(b) Symbols of quadrupole phase shift in Table 1. 

Symbol Phase shift 

l ~kl+~k2+~k3 
2 111+112+tl 3 

3 ~hl+~h2+~h3 

consistent. Since condition A requires hi + h 2-F h 3 = 0 
and 11 +/2 + 13 = 0, it follows that the generative reflec- 
tion ! (140) must have the same h and l indices as 
k - h  (130), but have a permutable k index of opposite 
parity. Thus, given the generative reflection E14o, the 
quadrupole is completely defined, and one has only 
to determine whether Eo2 2 and El l  2 a re  also in the 
phasing set. 

The conditions for type III quadrupoles given by 
(10) and (11) were explored systematically for all 
non-symmorphic space groups of orthorhombic or 
lower symmetry. Overall, these space groups give rise 
to a maximum of 24 distinct reciprocal-lattice condi- 
tions and 33 ditierent phase-shift forms. This may be 
compared with the six reciprocal-lattice conditions 
and nine phase shifts required for the type II quad- 
rupoles for these space groups. The 24 reciprocal- 
lattice conditions can be reduced to a non-redundant 
set of 12 conditions as was noted for the example 
(12, 13). Similarly 28 of the 33 phase-shift forms 
appear as redundant pairs and a reduced set of 14 
plus 5 or 19 can be obtained. 

Any two reduced sets of conditions, however, are 
not sufficient for defining all the space groups given 
in Table 4, as can be shown by the entries for the 

Table 4. Conditions and phase shifts of type III 
quadrupoles for non-symmorphic space groups of 

P2~2~2~ or lower symmetry 

All symbols refer to Table 5. Parentheses indicate the redundant 
equivalent pairs. 

Space group Type of quadrupoles 

P21 A1 (B2) 
Pc C3 (D4) 
Cc C3 (D4) 
P21/m A1 (B2) E1 (F2) 
P2/c C3 (D4) E4 (F3) 
P 2 J c  A1 (B2) C3 (D4) E5 (FS) 
C2/c  C3 ( D 4 ) E 4  (F3) 
P2221 G4 (H3) 
P21212 A1 (B2) I6 (J7) 
P21212 ~ A1 (B2) G4 (H3) 16 (J7) 

space groups P2~/m, P2/c and P2~/c. Here the 
pe.rtinent equivalent sets of conditions are (A1, B2), 
(C3, D4), ( E l ,  F2) and (E4, F3). The isolation of a 
non-redundant set by selecting the conditions A1 and 
C3 in preference to B2 and D4 produces a conflict 
in that both E1 and F3 must be selected for their 
permitted phase shifts, in spite of the fact that the 
conditions E and F are a redundant pair. This conflict 
can be resolved by alternatively choosing A1 and D4 
in preference to B2 and C3, and E1 and E4 in 
preference to F2 and F3, thus eliminating the symbols 
B, C, F, 2 and 3. Given that (C6, D7), (Q3, R4) and 
(Q7, R6) also appear as paired redundancies in Table 
4, C6 and Q3 must be eliminated since the codes C 
and 3 have been rejected in favor of codes D and 4. 
It follows that neither Q7 or R6 can be represented 
by the reduced set of codes as both Q and 6 have 
been eliminated. 

A non-redundant list of conditions may, however, 
be abstracted for any single space-group entry in 
Table 4, as it may be observed that no reciprocal- 
lattice condition is ever repeated more than once for 
any particular space group. Any non-redundant set 
of phase-shift conditions may be selected and there 
can be no conflict among the reciprocal-lattice condi- 
tions that are forced into this reduced set of condi- 
tions. 

The P212121 example (12) corresponds to condition 
16 in Table 4 while the equivalent alternate form (13) 
corresponds to condition J7. In addition to the 
reciprocal-lattice constraints on the vector 1, Table 5 
also defines Rj and Rk which guarantee closure for 
the quadrupole. An algorithm for identifying incon- 
sistent type III quadrupoles is similar to that 
employed for type I and type II quadruples, insofar 
as the phases in the variant ~ must be rotated in 
order to sample the three distinct phase pairs as the 
vectors h and k. The procedure differs from other 
quadrupole-generating methods in that, given any 
pair h and k, invariant ~2 is determined, as it does 
not involve the random vector i as it appears in either 
(1) or (3). It merely has to be determined whether 
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Table 5. The Miller indices o f  this table are defined as 
h = h i ,  k l ,  Ix ,  k = h2 ,  k2,  12", 1 = h3, k3,  13 referring to 

equation (9) 

The three d iagonal  e lements  o f  Rj and  Rk 

(a )  Symbols  o f  quad rupo le  condi t ion  and  
Table  4. 

are listed in the table.  

symmet ry  opera to r s  in 

Symbol  HKL condi t ion  R: R k 

A h 2 = h 3 and 12 = 13 -1 +1 -1 -1 +1 -1 
B h~=h 3 and 11=l 3 -1 +1 -1 +1 +1 +1 
C k2=k 3 +1 -1 +1 +1 -1 +1 
D k~=k 3 +1 -1 +1 +1 +1 +1 
E h 2 = h 3 and k I = k 3 a n d  12 = 13 -1 -1 -1 -1 +1 - I  
F h I = h 3 and k 2 = k 3 and I I = l 3 -1  -1 -1 +1 - l  +1 
G h l = h  3 and k a = k  3 -1 -1  +1 +1 +1 +1 
H h 2=h  3and k 2=k  3 -1 -1 +l  -1 -1 +1 
I k2 = k3 and 12 = 13 +1 -1 -1 +1 -1 -1 
J k~ = k 3 and l~ = l 3 +1 -1 -1 +1 +1 +1 

(b)  Symbols  o f  q u a d r u p o l e  phase  shift  in Table  4. 

Symbol  Phase shif t /360 ° 
i 1 

1 ~ k 2 + ~ k  3 
2 ~_kl I + ~k 3 
3 1 1 ~l 2 + ~l 3 

4 ~ ~ll + ~l 3 
5 1 1 1 1 ~k~ + ~.k2 + ~11 +~.12 
6 l i ~h 2 + ~h 3 

1 I 7 ~ht + ~h 3 

h + k.Rj corresponds to an E value in the phasing set. 
If so, the invariants q~3 and ( ~ 4  a r e  constructed by 
searching the phase set for those few data which 
satisfy the constraints on the vector 1 and have a 
non-zero phase shift. Only the non-restricted com- 
ponents of the vector ! need be permuted prior to 
finding whether h + k + l  corresponds to a large E 
value employed in the phasing set. Rk is not required 
to identify the data which close the quadrupole, but 
merely establishes the signs on the Miller indices for 
the phases in ( ~ 4 "  The translational shifts tj, tk a n d  t l  

required for the calculation of the phase shift (10) 
need not be given, as these values have been used to 
produce the explicit results in Table 5. 

The conditions for generating type III quadrupoles 
seem slightly more numerous than those for type II 
quadrupoles, which cumulatively require only six 
different lattice conditions and nine phase shifts for 
all space groups of orthorhombic or lower symmetry. 
The space group Pbca, for example, requires the most 
sets of conditions for both type II and type III quad- 
rupoles, i.e. 6 and 12 respectively. Higher-symmetry 
space groups generate a much larger set of reciprocal- 
lattice and phase-shift conditions. The first tetragonal 
space group that produces inconsistent quadrupoles 
is P4~, there being 45 unique sets of conditions for 
type II versus 21 non-redundant sets of conditions 
for type III quadrupoles. Thus it cannot be concluded, 
as could be inferred from Table 1, that the number 
of type III conditions will equal or exceed those 
required for type II quadrupoles for higher-symmetry 
space groups. 

Discussion 

Whereas the question of identifying the conditions 
which give rise to inconsistent quadrupoles has been 
answered above as a search over three independent 
rotation matrices (6) or (10), the problem of generat- 
ing the inconsistent quadrupoles common to a par- 
ticular triple has been described as a time-consuming 
search involving four independent symmetry 
operations (Cascarano et al., 1984). This in no way 

"disputes the validity of the earlier work. In comparing 
expression (12) of Cascarano et al. (1984) with (3) 
or (9) in this work, it should be clear that four sym- 
metry operations are involved in blindly generating 
these quadrupoles, but only three are required to 
define the conditions for their generation and estab- 
lish that a search over a fourth operation is 
unnecessary. It may,,, moreover, be seen that the 
reciprocal-lattice conditions given in Table 3 further 
reduce the time for such a search since (a) the sym- 
metry matrices are defined, and (b) the generative 
reflection ! in expression (3) or (9) need not span the 
full list of strongest ]EI magnitudes, but only those 
vectors 1, if any, which are related to the indices of 
vectors h and k in a specific way. These relationships 
can often be established prior to performing the 
search. Once such an E! has been found which pro- 
duces a non-zero phase shift, one has only to discover 
whether E~-k and Eh.aj-~ are in the phase set. If both 
E values are large, the relationship is ensured and 
one need not scan and test the matrices Rj, Rk and 
R~ to prove that such a relationship can be formed, 
as this information is given in Table 3. This algorithm 
would appear to be very efficient for non-symmorphic 
space groups of orthorhombic or lower symmetry. In 
higher-symmetry examples the number of distinct 
reciprocal-lattice conditions can often exceed the 
product of the number of symmetry operations and 
phased E values, such that it may be more efficient 
to use the more general scheme proposed by Cas- 
carano et al. (1984). 
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